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Correlated responses can be written in terms of principal component scores, but the uncer-
tainty in the original responses will be transferred and will influence the behavior of the
regression function. This paper presents a model building strategy that consider the mul-
tivariate uncertainty as weighting matrix for the principal components. The main objective
is to increase the value of R2 predicted to improve model’s explanation and optimization
results. A case study of AISI 52100 hardened steel turning with Wiper tools was performed
in a Central Composite Design with three-factors (cutting speed, feed rate and depth of cut)
for a set of five correlated metrics (Ra, Ry, Rz, Rq and Rt). Results indicate that different mod-
eling methods conduct approximately to the same predicted responses, nevertheless the
response surface to Weighted Principal Component – case b – (WPC1b) presented the high-
est predictability.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The uncertainty’s measurement is a problem that af-
fects the result’s accuracy. Pérez [1] affirms that the uncer-
tainties’ measurement can both affect the response
variable (y) and the predictor variables (x). Ignoring these
uncertainties makes inefficient the results obtained
through any design of experiments.

Correlated response may be written in terms of princi-
pal component scores. The uncertainty contained in the
original responses will contaminate the principal compo-
nents through the transfer function. The presence of corre-
lation greatly influences the model building tasks causing
its instability and provoking errors in the regression coeffi-
cients. In other words, the regression equations are not
adequate to represent the objective functions without con-
sidering the variance–covariance (or correlation) structure
[2,3]. The later aspect of the multi objective optimization is
the influence of the correlation among the responses over
the global solution. As pointed out by some researchers
[4–6] the individual analyses of each response may lead
to a conflicting optimum, since the factor levels that im-
prove one response can, otherwise, degrade another.

Wang [7] confirms that median or high correlations
existing among multiple responses significantly affect the
product quality and these correlations must be considered
when resolving the optimizing problem of multiple re-
sponses. Chiang and Hsieh [8] considered the correlation
between quality characteristics and applied the principal
component analysis to eliminate the multiple colinearity.
McFarland and Mahadevan [9] affirmed that large correla-
tion suggest that the parameters can be characterized
using a reduced set of variables and the standard method
for finding such a reduced set is PCA.
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Tong et al. [10] used PCA to simplify the optimization
process and multi-response problems and concluded that
the procedure is valid with some modifications. Wentzel
and Lohanes [11] applied a procedure based on the method
of Maximum Likelihood Principal Component Analysis
(MLPCA) to include measurement error covariance in mul-
tivariate decomposition. The method is similar to conven-
tional PCA, but it considers the uncertainty’s measurement
in the process placing less emphasis on measurements
with large variance. Bratchell [12] employed a second-
order response surface based on PCA to adequately repre-
sent the original set of responses in a small number of
latent variables. The Bratchell’s approach do not present
alternatives for the cases where the largest principal com-
ponent is not able to explain the most part of variance as
well as do not indicate how the specification limits and tar-
gets of each response could be transformed to the plane of
principal components. In spite of these gaps, the use of
PCA’s to overcome the correlation influence is very exten-
sive in the machining literature, mainly associated with
Taguchi designs [13,14].

PCA has become an indispensable tool for multivariate
analysis in areas such as exploratory data analysis, model-
ing, mixture analysis and calibration, but the major weak-
ness of this approach, however, is that it makes implicit
assumptions about measurement errors which are often
incorrect. This corrupts the quality of information provided
and may lead to erroneous results [15].

In this context, this study proposes a model building ap-
proach to estimate the total uncertainties’ measurement
that affects all response variables (Y = f(x1, x2, . . . , xk)),
using the inverse of multivariate uncertainty as weighting
matrix for principal components scores used to replace the
set of correlated variables in a set of uncorrelated ones. The
main objective of this proposal is to achieve a satisfactory
variance explanation, making the prediction R2 as higher as
possible, once it is useful in assessing the prediction ability
of models [16]. After the uncertainty correction, a multi-
objective optimization method – based on the concept of
Multivariate Mean Square Error (MMSE) – was used to im-
prove the multiple correlated characteristics combining
PCA and RSM.

To illustrate the proposal, Wiper CNGA120408
S01525WH inserts were used in a AISI 52100 hardened
steel turning operation.
2. Development of the method

Correlated variables can always be replaced by principal
components scores without significative loss of informa-
tion. Additionally, the rotation of axes which PC’s represen-
tation can also be used to improve the variance–covariance
explanation.

Then, to develop a WPCR (Weighted Principal Compo-
nent Regression) method using the uncertainties’ measure-
ment or the experimental variance and evaluate how the
weighting and rotation can influence the determination
of the regression coefficients, this approach combines
PCA, Factor Analysis (FA) and Weighted Least Square
(WLS) in the model building task.
The principal component analysis is one of the most
widely applied tools used to summarize common pat-
terns of variation among variables. Supposed that f1(x),
f2(x), . . . , fp(x) are correlated with values written in
terms of a random vector YT = [Y1, Y2, . . . , Yp]. Assuming
that R is the variance–covariance matrix associated to
this vector then R can be factorized in pairs of eigen-
values–eigenvectors ðki; eiÞ; . . . P ðkp; epÞ, where k1 P k2

P . . . P kp P 0, such as the ith uncorrelated linear
combination may be stated as PCi ¼ eT

i Y ¼ e1iY1þ
e2iY2 þ � � � þ epiYp with i = 1, 2, . . . , p. The ith principal
component can be obtained as maximization of this lin-
ear combination [17]. According Antony [18] the princi-
pal components are created in order of decreasing
variance, so that the first principal component accounts
for most variance in the data, the second principal com-
ponent less, and so on. Thus this is able to retain mean-
ingful information in the early PCA axes. The geometric
interpretation of these axes is shown in Fig. 1.

Generally, as the parameters R e q are unknown the
sample correlation matrix Rij and the sample variance–
covariance matrix Sij may be used [17]. If the variables
studied are taken in the same system of units or if they
are previously standardized, Sij is a more appropriate
choice. Otherwise, Rij must be employed in the factoriza-
tion. The sample variance–covariance matrix can be writ-
ten as follows:

Sij ¼

s11 s12 � � � s1p

s21 s22 � � � s21

..

. ..
. . .

. ..
.

sp1 sp2 � � � spp

2
66664

3
77775; with sii ¼

1
n

Xn

j¼1

ðyi � �yiÞ2

sij ¼
1
n

Xn

j¼1

ðyi � �yiÞðyj � �yjÞ ð1Þ

Then, the elements of sample correlation matrix Rij can
be obtained as:

rðyi ;yjÞ ¼
Covðyi; yjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðyiÞ � VarðyjÞ
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k̂i

q
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p

� i; j ¼ 1;2; . . . ;p ð2Þ

In practical terms, PC is an uncorrelated linear combina-
tion expressed in terms of a score matrix, defined by John-
son and Wichern [17] as

PCk ¼ ZTE ¼
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p
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Fig. 1. Geometric interpretation of principal components.
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Factor analysis is a multivariate statistical technique
very useful and powerful tool for effectively extracting
information from large databases and makes sense of large
collections of interrelated data [6].

According Johnson and Wichern [17] the observable ran-
dom vector x, with p components, has mean l and covari-
ance matrix R. The factor model postulates that x is
linearly dependent upon a few unobservable random vari-
ables F1, F2, . . . , Fm, called common factors, and p additional
sources of variation e1, e2, . . . , ep, called errors or, sometimes,
specific factors. In particular, the factor analysis model is,

X1 � l1 ¼ ‘11F1 þ ‘12F2 þ � � � þ ‘1mFm þ e1

X2 � l2 ¼ ‘21F1 þ ‘22F2 þ � � � þ ‘2mFm þ e2

..

. ..
.

Xp � lp ¼ ‘p1F1 þ ‘p2F2 þ � � � þ ‘pmFm þ ep

ð4Þ

or in matrix notation,

X
ðp�1Þ

¼ lþ L
ðp�mÞ

F
ðm�1Þ

þ e
ðp�1Þ

ð5Þ

The coefficient ‘ij is called the loading of the ith variable
on the jth factor, so the matrix L is the matrix of factor load-
ings. Note that the ith specific factor ei is associated only
with the ith response Xi. The p deviations X1 � l1,
X2 � l2, . . . , Xp � lp, are expressed in terms of p + m
random variables F1, F2, . . . , Fm, e1, e2, . . . , ep which are
unobservable. This distinguishes the factor model of Eq.
(5) from the multivariate regression model in Eq. (6), in
which the independent variables whose position is occu-
pied by F in Eq. (5) can be observed.

The multivariate linear regression model is,

Y
ðn�mÞ

¼ Z
ðn�ðrþ1ÞÞ

b
ððrþ1Þ�mÞ

þ e
ðn�mÞ

With

EðeiÞ ¼ 0 and CovðeðiÞ; eðkÞÞ ¼ rikI i; k ¼ 1;2; . . . ;m ð6Þ

The m observations on the jth trial have covariance ma-
trix R = {rik}, but observation from different trials are
uncorrelated. Here b and rik are unknown parameters;
the design matrix Z has jth row [Zj0, Zj1, . . . , Zjr].
With so many unobservable quantities, a direct verifica-
tion of the factor model from observations on X1, X2, . . . Xp

is hopeless. However, with some additional assumptions
about the random vectors F and e, the model in Eq. (5) im-
plies certain covariance relationships, which can be
checked.

We assume that

EðFÞ ¼ 0
ðm�1Þ

; CovðFÞ ¼ E½FF 0� ¼ I
ðm�mÞ

ð7Þ

EðeÞ ¼ 0
ðp�1Þ

; CovðeÞ ¼ E½ee0� ¼ W
ðp�pÞ
¼

w1 0 . . . 0
0 w2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . wP

2
66664

3
77775
ð8Þ

and that F and e are independent, so
Covðe; FÞ ¼ Eðe; F 0Þ ¼ 0

ðp�mÞ
.

These assumptions and the relation in Eq. (5) constitute
the orthogonal factor model, where,

li = mean of variable i
ei = ith specific factor
Fj = jth common factor
Lij = loading of the ith variable on the jth factor
The unobservable random vectors F and e satisfy the fol-
lowing conditions:
F and e are independent
E(F) = 0, Cov (F) = I
E(e) = 0, Cov (e) = W, where W is a diagonal matrix

2.1. Multivariate uncertainty for PC score regression

To develop an appropriate equation for the multivariate
uncertainty for correlated quantities the basic model can
be written as

u2
mðyÞ ¼

Xn

i¼1

@f
@xi

� �2

u2
c ðxiÞ þ 2

Xn�1

i

Xn

j¼iþ1

@f
@xi

� �
� @f

@xj

� �

� uðxiÞ � uðxjÞ � rðxi; xjÞ ð9Þ
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Considering that in the PCA, the multiple responses can
be combined in the form of principal component scores,
such as PCk = ZTE, where Z can be established as:

ZP ¼
ðxip � lpÞ

rp
ð10Þ

Then, applying Eq. (9) to the case of Principal Compo-
nent Analysis (PCA), we have:

y ¼ f ðxÞ ¼ PCscore ¼
Xp

i¼1

ðei � ZiÞ ¼
Xp

i¼1

ei �
xi � l

r

� �h i
ð11Þ

where
@f
@xi
¼ ei

r
ð12Þ

Finally, the combination of Eqs. (9) and (11) can be
written as:

u2
mðPCÞ ¼ e1

rx1

� �2

u2ðxiÞ þ
e2

rx2

� �2

u2ðxjÞ þ 2� e1

rxi

� �

� e2

rxj

 !
� uðxiÞ � uðxjÞ � rðxi; xjÞ ð13Þ

where ei is eigenvector of the correlation matrix used in
the extraction of principal components; rxi

is the standard
deviation of the response data (column) I; rxj

is the stan-
dard deviation of the response data (column) j; u2(xi) is
the uncertainty (or variance) of each observation response
I; u2(xj) is the uncertainty of each observation of the re-
sponse j and r(xi, xj) is the coefficient of correlation be-
tween xi and xj responses.

2.2. Multivariate uncertainty for PC score obtained by factor
analysis

The optimization by PCA cannot always produce satisfac-
tory results. Bratchell [12] points out that some difficulties
can be resolved or avoided by using other techniques. Using
the principal component analysis to model and optimize
multivariate response was observed that in some situation
the rotation of the principal components provides an easy
and accessible means of analyzing and optimizing a multi-
variate response which simplifies interpretation of the over-
all response and retains the flexibility associated with linear
or non-linear modeling. Factor analysis is one of techniques
that can improve the adjustments. It is a mathematical tool
for examining a wide range of data sets, with applications
especially important to the design of experiments (DOEs).

Following Bratchell’s recommendation, the component
scores were obtained by factor analysis, thus the weighted
matrix will be the inverse of multivariate uncertainty cal-
culated using the equation below,

u2
mðFArotatedÞ ¼

k1

rx1

� �2

u2ðxiÞ þ
k2

rx2

� �2

u2ðxjÞ þ 2

� k1

rxi

� �
� k2

rxj

 !
� uðxiÞ � uðxjÞ

� rðxi; xjÞ ð14Þ

where k1 and k2 are the coefficients of the factors obtained
by varimax rotation. Rotation is applied to simplify the
data structure and according Johnson and Wichern [17]
varimax rotation is the most common choice.

2.3. Weighted least squares

When the errors e are uncorrelated but have unequal
variances so that the covariance matrix of e is

r2V ¼ r2

1
w1

0
1

w1

. .
.

0 1
wn

2
666664

3
777775 ð15Þ

say, the estimation procedure is usually called weighted
least squares. Let W = V�1. Since V is a diagonal matrix,
W is also diagonal with diagonal elements or weights w1,
w2, . . . , wn. The weighted least squares normal equations is

b̂ ¼ ðXTWXÞ�1XTWY ð16Þ

which is the weighted least squares estimator. The obser-
vation with large variances will have smaller weights than
observations with small variances [19].

To use weighted least squares in a practical sense, we
must know the weights w1, w2, . . . , wn. Sometimes prior
knowledge or experience or information based on underly-
ing theoretical considerations can be used to determine the
weights. In order situations we may find empirically that
the variability in the response is a function of one or more
regressors, and so a model may be fit to predict the vari-
ance of each observation and hence determine the weights.
In some cases we may have to estimate the weights, per-
form the analysis, re-estimate a new set of weights based
on these results, and then perform the analysis again [19].

Cho and Park [20] recommend the use of weighted least
squares method to balance the data with weights that are
inversely proportional to the variance at each level of the
explanatory variables when the variance is not constant.
Through this method, Pérez [1] weighted the regressors
of surface roughness for Ra and Rq using the inverse of
the uncertainty’s measurement as weighting matrix, which
is determined in the following equation,

Wy ¼
1
u2

y
ð17Þ

where Wy is a diagonal array with its main diagonal ele-
ments and u2 is the total uncertainty of the process for
each of the response values.

Applying the mathematical method developed in Eqs.
(13) and (14) is possible to establish the W matrix to apply
the WLS (Weighted Least Square) method on principal
component scores, such as:

WPC ¼
1

u2
MPC

ð18Þ

where W matrix is adopted as variance inverse of PC or PC
rotated and Um is the total uncertainty of the process.

To explain the method application Fig. 2 shows the fun-
damental steps in the proposed approach using PCA.



Fig. 2. Flow of searching for WLS models.
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3. Optimization

This section discusses the application of multivariate
optimization based in MMSE. Under various circumstances
the multiple responses considered in a process present con-
flict of objectives, with individually optimization leading to
different solution sets. This fact characterizes a multiobjec-
tive optimization problem and, also considering inequality
constraints, can be stated as the following equation:

Minimize f 1ðxÞ; f2ðxÞ; . . . ; fpðxÞ
Subject to : gjðxÞ 6 0; j ¼ 1;2; . . . ;m

ð19Þ

Supposed that f1(x), f2(x), . . . , fp(x) are correlated with
values written in terms of a random vector YT = [Y1,
Y2, . . . , Yp]. Assuming that R is the variance–covariance
matrix associated to this vector then R can be factorized
in pairs of eigenvalues–eigenvectors ðki; eiÞ; . . . P ðkp; epÞ,
where k1 P k2 P � � �P kp P 0, such as the ith uncorrelated
linear combination may be stated as PCi ¼ eT

i Y ¼ e1iY1þ
e2iY2 þ � � � þ epiYp with i = 1, 2, . . . , p.

Multivariate Mean Square Error (MMSE) is a multivari-
ate dual response surface criteria developed to replace the
estimated mean ŷ by an estimated principal component
score regression (PCi) and the variance r̂2 by the respective
eigenvalue ki [21]. Taking fPCi

as the target for the ith prin-
cipal component, a multivariate mean square error formu-
lation can be defined as:

MMSEi ¼ ðPCi � fPCi
Þ2 þ ki ð20Þ
In Eq. (20) PCi is the fitted second-order polynomial and
fPCi

is the target value of the ith principal component that
must keep a straightforward relation with the targets of
the original data set. This relationship may be established
using Eq. (21) such as:

fPCi
¼ eT

i ½ZðYpjfYp Þ� ¼
Xp

i¼1

Xq

j¼1

eij½ZðYpjfYp Þ�

i ¼ 1;2; . . . p; j ¼ 1;2; . . . ; q ð21Þ

In Eq. (21) ei are the eigenvectors associated to the ith
principal component and fYp represents the target for each
of the p original responses. With this transformation, it can
be established a coherent value for the target of the ith
principal component, that is compatible with the targets
of the original problem.

If more than one principal component is needed, then
the MMSE functions whose eigenvalues are equal or
greater than the unity, may be written in following
form:

Minimize MMSET ¼
Yk

i¼1

ðMMSEi ki P 1j Þ
" # 1

kð Þ

¼
Yk

i¼1

½ðPCi � fPCi
Þ2 þ ki ki P 1j �

( ) 1
kð Þ

� i ¼ 1;2; . . . ; k; k 6 p ð22Þ



Table 1
Assignment of the variables levels.

Parameters Levels

Coded units �1.682 �1 0 1 1.682
Cutting speed (m/min) 186.4 200 220 240 253.6
Feed rate (mm/rev) 0.132 0.20 0.30 0.40 0.468
Depth of cut (mm) 0.099 0.15 0.225 0.30 0.351
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Subject to : xT x 6 q2 ð23Þ

ĝiðxÞ 6 0 ð24Þ

With : fPCi

¼ e1i½ZðY1jfY1
Þ� þ e2i½ZðY2jfY2

Þ� þ � � �
þ epi½ZðYpjfYp Þ� ð25Þ

PCi ¼ b0i þ ½rf ðxÞT �i þ
1
2

xT ½r2f ðxÞ�x
	 


i

i ¼ 1;2; . . . ;p: ð26Þ

where Z represents the standardized value of the ith
response considering its target value fYi, such that
Z(Yi|fYi) = [(fYi) � lYi]�(rYi)�1. k is the number of factors
and e is the error term; x is the vector of parameters, b0

is the regression constant term, rf(x)T is the gradient of
the objective function corresponding to the first-order
regression coefficients and r2f(x)T is the Hessian matrix,
formed by the quadratic and interaction terms of the esti-
mated model of Y.

4. Experimental procedure

To accomplish with the goals of this paper, dry turning
tests were conducted on a CNC lathe with maximum rota-
tional speed of 4000 rpm and power of 5.5 kW. The work-
pieces used in the turning process were made with
dimensions of Ø49 mm � 50 mm. All of them were
quenched and tempered. After this heat treatment, their
hardness was between 49 and 52 HRC (Rockwell Hard-
ness), up to a depth of 3 mm below the surface. The work-
piece material was AISI 52100 steel, with the following
chemical composition: 1.03% C; 0.23% Si; 0.35% Mn;
1.40% Cr; 0.04% Mo; 0.11% Ni; 0.001% S; 0.01%. The Wiper
mixed ceramic (Al2O3 + TiC) inserts (CNGA 120408
S01525WH) coated with a very thin layer of titanium ni-
tride (TiN) were used in the experiment. The WIPER inserts
represent a new technology on turning operations, manly
by their new type of nose configuration. Depending on
the machining parameters, this insert is capable of gener-
ating a better surface finish at a much higher feed. There-
fore, the use of Wiper inserts increase the productivity,
keeping the surface roughness as lower as possible. This
Fig. 3. Hard Turning process with Wiper geometry tool.
particular characteristic can be used to eliminate grinding
operations, which represents a great advantage to the
manufacturers. Correia and Davim [22] and Asiltürk and
Neseli [23] reported similar results obtained using the wi-
per insert. Fig. 3 represents the turning process of AISI
52100 hardened steel with Wiper inserts used in this
experimental study.

Adopting this experimental condition, the workpieces
were machined using the range of parameters reported in
Table 1.

A sequential set of experimental runs was estab-
lished using a CCD built according to the design shown
in Table 2. The following surface roughness parameters
were obtained by means of a Mitutoyo Surftest 201
roughness meter set to a cut-off length of 0.25 mm:
arithmetic average surface roughness (Ra), maximum
surface roughness (RY), root mean square roughness
(Rq), ten point height (Rz) and maximum peak to valley
(Rt). After turning each part, the surface roughness was
measured at four positions at the center of the work-
piece. An average of three measurements was taken
for each position by rotating the part 90� after measur-
ing its roughness. The mean values of these measure-
ments are represented in Table 2. In the same table,
PC1A correspond to the scores of the first principal com-
ponent for RaRq and PC1B represent the scores of the
first principal component for RaRyRzRqRt, both extracted
from the correlation matrix of the respective dataset.
The detailed procedure of the principal component anal-
ysis is shown in Table 4.

Table 3 represents the experimental variance obtained
with the four measurements of each metric of surface
roughness.
5. Results and discussion

Applying Eq. (3), the scores of the first principal com-
ponent (PC1) were obtained as can be seen in Table 2.
Using the Principal Component Analysis (PCA) to decom-
pose the correlation structure, it can be verified that the
first principal component (PC1A) for RaRq explains 97.3%
of the total variation observed in the two surface rough-
ness responses, with an eigenvalue equals to 1.946 and
respective eigenvectors. Working with a set of data for
five surface roughness responses (Ra; Ry; Rz; Rq; Rt),
PC1B explains 96.4% of the total variation with the larg-
est eigenvalue equals to 4.821 and respective eigenvec-
tors listed in Table 4. This multivariate analysis was
done with Minitab 15.0 but it is also available in many
statistical packages.



Table 2
Parameters and responses measured.

Machining parameters Responses PCA scores FA scores

Vc Fn d Ra Ry Rz Rq Rt PC1A PC1B FPC1A FPC1B

�1 �1 �1 0.15 0.97 0.85 0.19 0.99 �2.09 �3.29 �1.11 �0.97
+1 �1 �1 0.22 1.13 1.07 0.26 1.16 �1.31 �2.38 �1.02 �1.05
�1 +1 �1 0.39 2.65 2.11 0.53 2.67 1.06 2.04 0.67 1.08
+1 +1 �1 0.38 2.34 1.87 0.50 2.42 0.90 1.35 0.33 0.46
�1 �1 +1 0.18 1.15 0.99 0.23 1.17 �1.73 �2.70 �0.82 �0.79
+1 �1 +1 0.17 1.09 1.00 0.22 1.13 �1.81 �2.80 �0.95 �0.81
�1 +1 +1 0.36 2.22 1.75 0.46 2.39 0.57 0.93 0.16 0.52
+1 +1 +1 0.41 2.65 2.09 0.53 2.73 1.25 2.18 0.39 1.08
�1.68 0 0 0.37 2.04 1.84 0.47 2.07 0.71 0.78 0.05 �0.19
1.68 0 0 0.36 2.20 1.95 0.48 2.23 0.64 1.05 0.34 0.26
0 �1.68 0 0.10 0.74 0.63 0.12 0.79 �2.79 �4.20 �1.30 �1.03
0 1.68 0 0.53 3.46 2.48 0.68 3.52 2.76 4.53 0.88 2.05
0 0 �1.68 0.35 1.93 1.71 0.42 1.98 0.31 0.29 �0.43 �0.05
0 0 1.68 0.42 2.36 2.12 0.52 2.43 1.23 1.81 0.14 0.42
0 0 0 0.30 2.02 1.82 0.40 2.05 �0.10 0.22 0.12 0.36
0 0 0 0.29 2.15 1.73 0.39 2.19 �0.21 0.26 �0.11 0.85
0 0 0 0.31 1.77 1.61 0.60 1.70 0.88 0.25 3.22 �2.32
0 0 0 0.29 1.86 1.60 0.36 1.92 �0.36 �0.33 �0.47 0.26
0 0 0 0.32 1.88 1.60 0.42 1.98 0.10 0.02 �0.09 �0.12

Mean l 0.310 1.925 1.622 0.409 1.975 0.000 0.000
SD r 0.108 0.678 0.494 0.149 0.692
Target (fYi) 0.090 0.710 0.620 0.120 0.690 �2.815 �4.323
Z ZðYi fYij Þ �2.042 �1.793 �2.027 �1.940 �1.856

Table 3
Experimental variances and multivariate weights.

Var Ra Var Ry Var Rz Var Rq Var Rt W (PC1A) W (PC1B) WPC1BF WPC1AF

0.0002 0.0232 0.0107 0.0004 0.0186 31.8272 6.5503 58.12865 12.40494
0.0010 0.0076 0.0097 0.0009 0.0065 8.6627 5.9594 35.36257 81.42054
0.0003 0.0533 0.0058 0.0001 0.0455 33.6697 4.6105 56.99478 3.517637
0.0004 0.0247 0.0217 0.0012 0.0287 11.9647 3.6576 12.34147 15.13378
0.0003 0.0059 0.0815 0.0004 0.0045 24.6972 4.4011 74.51362 31.48883
0.0004 0.0052 0.0060 0.0006 0.0063 17.2311 9.9061 40.86533 104.4103
0.0006 0.0119 0.0274 0.0009 0.0227 10.9044 3.9134 34.58623 21.58304
0.0006 0.0391 0.0150 0.0010 0.0302 10.6690 3.4098 25.28757 10.20686
0.0009 0.0191 0.0075 0.0012 0.0165 7.8056 4.4605 28.45866 34.05698
0.0004 0.0577 0.0197 0.0013 0.0503 11.4857 2.6853 10.77569 5.872338
0.0000 0.0015 0.0008 0.0000 0.0040 236.2661 57.1103 580.9875 97.51999
0.0016 0.0278 0.0584 0.0020 0.0176 4.5319 2.0128 15.9641 21.82228
0.0009 0.0102 0.0162 0.0007 0.0039 9.7889 5.6581 38.95572 83.56822
0.0010 0.0568 0.0480 0.0020 0.0485 5.9276 1.7805 10.29008 6.847434
0.0012 0.0413 0.0293 0.0018 0.0393 5.6953 2.1960 15.92233 10.33892
0.0010 0.0567 0.0010 0.0008 0.0467 8.7744 3.5038 35.40306 6.400632
0.0003 0.0034 0.0013 0.2239 0.1719 0.1820 0.3218 0.016693 0.071986
0.0005 0.0249 0.0056 0.0007 0.0098 14.0235 6.2319 42.29087 30.1927
0.0003 0.0074 0.0222 0.0006 0.0349 19.1635 4.8936 42.00797 14.27545
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5.1. Analysis and results for PC1A

Table 5 shows the results for PC1A (RaRq) obtained from
the Analyze Response Surface Design and Regression Anal-
ysis. The value of R-Sq(adj) in the unweighted matrix is be-
low of 75%. The model needs to be increased to explain its
relationship with one or more predictor variables. Thus to
determinate the multivariate uncertainty involved in the
experiment, Eq. (13) was applied to calculate the total
uncertainty for PC1A. The regressors were weighted using
the weight matrix (WPC1A), as shown in Eq. (18). Pérez
[1] used a similar model to modeling the response values
for Ra and Rq.

The equation for PC1A unweighted is

PC1A ¼ 0:096þ 0:080Vc þ 1:467Fnþ 0:092d

þ 0:025Vc2 � 0:217Fn2 þ 0:059d2

� 0:022Vc � Fn� 0:001Vc � dþ 0:001Fn� d ð27Þ
The result in Table 5 (WPC1A) shows that the mathe-

matical model through the use of a weighted matrix
can filter the uncertainty and thereby raise the value of



Table 4
Principal component analysis for PC1A and PC1B.

Eigenanalysis of the correlation matrix

PC PC1A (Ra, Rq) PC1B (Ra, Ry, Rz, Rq, Rt)

Eigenvalue 1.946 0.054 4.821 0.123 0.031 0.024 0.001
Proportion 0.973 0.027 0.964 0.025 0.006 0.005 0.000
Cumulative 0.973 1.000 0.964 0.989 0.995 1.000 1.000

Variable PC1 PC2 PC1 PC2 PC3 PC4 PC5

Ra 0.707 0.707 0.451 �0.075 �0.525 �0.711 0.101
Ry 0.451 0.360 0.388 0.062 0.716
Rz 0.451 0.050 �0.564 0.687 �0.063
Rq 0.707 �0.707 0.436 �0.811 0.375 0.075 �0.076
Rt 0.449 0.451 0.340 �0.111 �0.684

Table 5
Response surface regression and regression analysis: PC1A � Vc, Fn and d.

Unweighted estimated regression coefficients for PC1A Weighted analysis using weights in WPC1A

Term Coef SE Coef T P Coef SE Coef T P

Constant 0.096 0.320 0.301 0.771 �0.074 0.291 �0.250 0.806
Vc 0.080 0.194 0.413 0.689 0.135 0.148 0.910 0.386
Fn 1.467 0.194 7.561 0.000 1.386 0.148 9.370 0.000
d 0.092 0.194 0.473 0.647 0.039 0.157 0.250 0.808
Vc2 0.025 0.194 0.127 0.901 0.046 0.169 0.270 0.790
Fn2 �0.217 0.194 �1.120 0.292 �0.145 0.139 �1.050 0.323
d2 0.059 0.194 0.303 0.769 0.019 0.178 0.110 0.917
Vc � Fn �0.022 0.254 �0.087 0.933 �0.067 0.181 �0.370 0.720
Vc � d �0.001 0.254 0.000 1.000 �0.068 0.180 �0.380 0.714
Fn � d 0.001 0.254 0.003 0.998 �0.002 0.176 �0.010 0.994
S = 0.72 R-Sq(pred) = 14.81% R-Sq(adj) = 73.57% S = 2.01 R-Sq(pred) = 96.49% R-Sq(adj) = 93.70%
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R-Sq(adj). Now it’s possible to explain 93.70% of the vari-
ability in PC1A. It means an improvement of 20.13%. The
regression equation for PC1A weighted is
WPC1A ¼ �0:074þ 0:135Vc þ 1:386Fnþ 0:039d

þ 0:046Vc2 � 0:145Fn2 þ 0:019d2 � 0:067Vc
� Fn� 0:068Vc � d� 0:002Fn� d ð28Þ

As can be seen in both equations, feed (Fn) is
the only one significant effect on the surface roughness
set of data. Asiltürk and Neseli [23], Davim [24]
and Aouici et al. [25] agree that feed rate (Fn)
have statistical influence on the surface roughness in
piece.

Bratchell [12] affirms that in some situations rotation
of the principal components may provide factors which
can be interpreted physically. In order to investigate
the rotation effect over the model, a multivariate factor
analysis was carried out. The method of extraction is
principal components and type of rotation is varimax.
The attained results are demonstrated in Table 6, where
PC1AF means factor analysis of principal component with
varimax rotation.

Throughout factor analysis with varimax rotation
the result of R-Sq(adj) was not improved as expected.
The results of this analysis are exposed in the following
equation:
PC1AF ¼ 0:541þ 0:025Vc þ 0:669Fnþ 0:065d� 0:163Vc2

� 0:306Fn2 � 0:283d2 � 0:007Vc � Fnþ 0:045Vc

� d� 0:101Fn� d ð29Þ

Thus, to obtain a better explanation of the model, the
regressors were pondering with a weighted matrix
(WPC1AF) as exposed in Table 6.

Now the model is capable to explain 94.0% of the vari-
ability in PC1AF and the Lack of Fit, as can be seen in Table 7
is over than 0.05.

Then using the actual variables the regression equation
can be written as:

WPC1AF ¼ �0:181þ 0:007Vc þ 0:672Fn� 0:002d

þ 0:054Vc2 � 0:002Fn2 � 0:093d2

� 0:003Vc � Fnþ 0:021Vc � d

� 0:128Fn� d ð30Þ
5.2. Analysis and results for PC1B (Ra; Ry; Rz; Rq; Rt)

PC1B represents a set of data for five surface roughness
responses. Eq. (13) was developed to works with a pair of
response (RaRq), but to identify the total multivariate
uncertainty for (Ra; Ry; Rz; Rq; Rt) another equation must
be developed. So the total multivariate uncertainty for
PC1B is then calculated using the following equation:When
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Eq. (31) is used to calculate the total multivariate uncer-
tainty for the scores obtained with rotation in factor anal-
ysis (PC1BF), ei is substituted by ki. Where ki is the
coefficient of the factor obtained by varimax rotation.

Table 8 provides the comparative data between PC1B

unweighted and PC1B weighted.
Unweighted Estimated Regression Coefficients for PC1B

shows an average for R-Sq(adj) of 81.02% and the equation is

PC1B ¼ 0:134þ 0:132Vc þ 2:370Fnþ 0:179dþ 0:010Vc2

� 0:255Fn2 þ 0:058d2 � 0:032Vc � Fnþ 0:116Vc

� d� 0:056Fn� d ð32Þ

To determine the multivariate uncertainty involved in
the experiment, Eq. (31) was applied to calculate the total
uncertainty for PC1B. The regressors were weighted using
Table 6
Response surface regression and regression analysis: PC1AF � Vc, Fn and d.

Unweighted estimated regression coefficients for PC1AF

Term Coef SE Coef T P

Constant 0.541 0.459 1.176 0.270
Vc 0.025 0.279 0.091 0.929
Fn 0.669 0.279 2.402 0.040
d 0.065 0.279 0.231 0.822
Vc2 �0.163 0.279 �0.584 0.573
Fn2 �0.306 0.279 �1.098 0.301
d2 �0.283 0.279 �1.017 0.336
Vc � Fn �0.007 0.364 �0.020 0.984
Vc � d 0.045 0.364 0.125 0.903
Fn � d �0.101 0.364 �0.279 0.787
S = 1.03 R-Sq(pred) = 4.52% R-Sq(adj) = 0.00%
the weight matrix (WPC1B) as shown in Eq. (18). The re-
sults observed in Table 8 show that R-Sq(adj) improved
from 81.02% to 92.4%.

The regression equation with actual variables can be
written as:

WPC1B ¼ 0:030þ 0:077Vc þ 2:281Fnþ 0:001d

þ 0:017Vc2 � 0:164Fn2 � 0:063d2 � 0:005Vc

� Fn� 0:028Vc � d� 0:036Fn� d ð33Þ

In order to better understand the rotation effect over
the model, as suggested by Bratchell, the multivariate fac-
tor analysis was carried out. The additional F to PC1B

means the first principal component with factor analysis
and varimax rotation. The results shown in Table 9
(Unweighted Estimated Regression Coefficients for PC1BF)
Weighted analysis using weights in WPC1AF

Coef SE Coef T P

�0.181 0.112 �1.620 0.140
0.007 0.069 0.110 0.917
0.672 0.061 11.000 0.000
�0.002 0.067 �0.030 0.979

0.054 0.074 0.740 0.479
�0.002 0.055 �0.030 0.975
�0.093 0.069 �1.350 0.210
�0.003 0.077 �0.040 0.966

0.021 0.075 0.280 0.783
�0.128 0.074 �1.730 0.118
S = 1.30 R-Sq(pred) = 96.90% R-Sq(adj) = 94.0%



Table 7
Analysis of variance.

Source DF SS MS F P

Regression 9 497.576 55.286 32.530 0.000
Residual error 9 15.297 1.700
Lack of Fit 5 9.492 1.898 1.310 0.409
Pure error 4 5.804 1.451
Total 18 512.872
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are worse than the results extracted without factor analy-
sis with varimax rotation. But when the regressors were
weighted by a weight matrix, the results were improved.
It can be seen in Table 9 where the results for R-Sq(adj)
raised from 25.00% to 92.4%.

The equation for PC1BF unweighted is given below in:

PC1BF ¼ �0:182þ 0:043Vc þ 0:874Fnþ 0:093d

þ 0:010Vc2 þ 0:179Fn2 þ 0:063d2

þ 0:005Vc � Fnþ 0:156Vc � d� 0:042Fn

� d ð34Þ

Once weighted the regression equation with actual
variables can be written as:

WPC1BF ¼ 0:263� 0:012Vc þ 0:865Fnþ 0:029d

� 0:188Vc2 þ 0:054Fn2 � 0:104d2

þ 0:068Vc � Fnþ 0:115Vc � d

� 0:001Fn� d ð35Þ
Table 8
Response surface regression and regression analysis: PC1B � Vc, Fn and d.

Unweighted estimated regression coefficients for PC1B

Term Coef SE Coef T P

Constant 0.134 0.427 0.313 0.761
Vc 0.132 0.259 0.511 0.622
Fn 2.370 0.2589 9.155 0.000
d 0.179 0.2589 0.690 0.508
Vc2 0.010 0.2589 0.040 0.969
Fn2 �0.255 0.2589 �0.984 0.351
d2 0.058 0.2589 0.224 0.828
Vc � Fn �0.032 0.338 �0.094 0.927
Vc � d 0.116 0.338 0.344 0.739
Fn � d �0.056 0.338 �0.166 0.872
S = 0.96 R-Sq(pred) = 28.03% R-Sq(adj) = 81.02%

Table 9
Response surface regression and regression analysis: PC1BF � Vc, f and d.

Unweighted estimated regression coefficients for PC1BF

Term Coef SE Coef T P

Constant �0.182 0.387 �0.469 0.650
Vc 0.043 0.234 0.184 0.858
Fn 0.874 0.234 3.730 0.005
d 0.093 0.234 0.395 0.702
Vc2 0.010 0.234 0.042 0.967
Fn2 0.179 0.234 0.765 0.464
d2 0.063 0.234 0.271 0.793
Vc � Fn 0.005 0.306 0.016 0.987
Vc � d 0.156 0.306 0.509 0.623
Fn � d �0.042 0.306 �0.138 0.893
S = 0.87 R-Sq(pred) = 19.48% R-Sq(adj) = 25.00%
The Lack of Fit, as can be seen in Table 10 is over than
0.05.

In statistics, the coefficient of determination is used in
cases of statistical models, whose main purpose is the pre-
diction of future outcomes on the basis of other related
information [26]. To assess and compare the efficiency of
each model (normal, weighted or rotated) we will use
the predicted R2 coefficient (R2 pred). This coefficient pro-
vides a measure of how well future outcomes are likely to
be predicted by the model. It takes values between zero
and the unit (0 6 R2

6 1). The closer the value is to the unit,
the better and more accurate is the prediction. The pre-
dicted R2 can be calculated as:

R2ðpred:Þ ¼
Pn

i¼1
ei

1�hi

� �2

1�
Pn

i¼1ðyi � �yÞ2
ð36Þ

where yi is the ith observed response value, �y is the mean
response, n is the number of experiments or observations,
ei is the ith residual and hi is the ith diagonal element of
X(XTX)�1XT. X is the matrix of predictors.

For summarize and compare the results obtained in the
two case studies, we will use a full factorial design, as can
be seen in Table 11. With this approach we can analyze the
influence of the presence or absence of the weights or rota-
tion over the explanation property of the models. Consid-
ering the cases ‘‘A’’ and ‘‘B’’ as two replicates of 22 full
factorial design, we obtain the following results.

The interaction analysis in Fig. 4 clearly shows that the
multivariate weighting strategy is more important for R2
Weighted analysis using weights in WPC1B

Coef SE Coef T P

0.030 0.436 0.070 0.947
0.077 0.238 0.320 0.754
2.281 0.229 9.960 0.000
0.001 0.243 0.010 0.996
0.017 0.252 0.070 0.948
�0.164 0.213 �0.770 0.461
�0.063 0.255 �0.250 0.810
�0.005 0.290 �0.020 0.987
�0.028 0.284 �0.100 0.923
�0.036 0.291 �0.120 0.905
S = 1.81 R-Sq(pred) = 94.64% R-Sq(adj) = 92.40%

Weighted analysis using weights in WPC1BF

Coef SE Coef T P

0.263 0.152 1.730 0.118
�0.012 0.077 �0.150 0.884

0.865 0.065 13.400 0.000
0.029 0.076 0.390 0.705
�0.188 0.079 �2.380 0.041

0.054 0.070 0.770 0.462
�0.104 0.074 �1.410 0.193

0.068 0.099 0.680 0.512
0.115 0.087 1.330 0.218
�0.001 0.098 �0.010 0.989
S = 1.19 R-Sq(pred) = 95.98% R-Sq(adj) = 92.40%



Table 10
Analysis of variance.

Source DF SS MS F P

Regression 9 326.011 36.223 25.390 0.000
Residual error 9 12.841 1.427
Lack of Fit 5 8.055 1.611 1.350 0.398
Pure error 4 4.786 1.196
Total 18 338.852

Table 11
Summary of results.

Method Weight Rotation R2 adj (%) R2 pred (%)

PC1a Without Without 73.57 14.81
WPC1a With Without 93.70 96.49
PC1Fa Without With 0.00 4.52
WPC1Fa With With 94.00 96.90
PC1b Without Without 81.02 28.03
WPC1b With Without 92.40 94.64
PC1Fb Without With 25.00 19.48
WPC1Fb With With 93.20 96.01
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adjusted and R2 predicted than varimax rotation. It is ob-
served that the rotation is only significant when there is
interaction with the weighting. Although this conclusion
cannot be extrapolated or generalized to other models, in
this specific case we will follow with the optimization
phase using only the principal component response normal
and weighted to assess the efficiency of MMSE optimiza-
tion approach.
Fig. 4. Statistical analysis of the influence of we
5.3. Optimization

The process optimization is an important task due to
accurate means of shaping the parts into final product with
required surface finish and high dimensional accuracy.
Problems are formulated to attend a specific target. In this
work the objective is to minimize a certain response.

The optimization based on the concept of multivariate
mean square error is capable of finding out the best combi-
nation to attend all the established targets for a correlated
set of responses. Eq. (37) was applied to optimize the vari-
ables responses for Ra; Ry; Rz; Rq and Rt.

Minimize MMSEi ¼ ðPCi � fPCi
Þ2 þ ki

Subject to : xT x 6 q2
ð37Þ

According to Table 2, the targets for the surface rough-
ness (fYi) are, respectively, 0.090, 0.710, 0.620, 0.120, and
0.690. Standardizing these values and using the respective
eigenvectors (Table 4), it is possible to calculate the targets
for the principal components ðfPCi

Þ. So, for case A,
fPCA

1
¼ �2:815 and for case B, fPCB

1
¼ �4:323. Table 12

shows the MMSE optimization’s results taking into consid-
eration the principal component regression for normal and
weighted responses.

The results indicate that different modeling methods
conduct approximately to the same predicted responses
at optimum, without significant difference between results
obtained with MMSE. But nevertheless, the multivariate
weighted response surfaces (WPC1a; WPC1b) presented
ights and rotation on R2 adj and R2 pred.



Table 12
Optimization results.

Method R2 Pred (%) Optimum parameters Predicted RESPONSES at optimum

Vc Fn d Ra Ry Rz Rq Rt

0.090A 0.710 0.620 0.120 0.690

PC1a 14.81 �0.087 �1.595 �0.101 0.093 0.712 0.568 0.116 0.736
218.3B 0.141 0.217 3.6%C 0.3% �8.3% �3.7% 6.6%

WPC1a 96.49 0.005 �1.681 �0.052 0.081 0.650 0.502 0.096 0.676
220.1 0.132 0.221 �10.1% �8.4% �18.9% �20.1% �2.1%

PC1b 28.03 �0.089 1.590 �0.120 0.094 0.714 0.571 0.117 0.738
218.2 0.141 0.216 4.5% 0.6% �7.9% �2.9% 7.0%

WPC1b 94.64 �0.050 �1.681 �0.040 0.081 0.650 0.500 0.096 0.675
219.0 0.132 0.222 �10.5% �8.4% �19.3% �20.4% �2.2%

A Targets.
B Uncoded units.
C Percentual error of optimization method.

Fig. 5. Overlaid contour plot showing the MMSE optimum obtained with WPC1B case.

Table 13
Responses measured.

Runs Responses

Ra Ry Rz Rq Rt

1 0.12 0.81 0.74 0.15 0.84
2 0.12 0.77 0.68 0.14 0.79
3 0.11 0.76 0.68 0.14 0.79
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higher predicted R2. Then, it is possible to conclude that
the solutions obtained with the weighted principal compo-
nent regression equations achieve the proposed targets
through multivariate mean square error approach while
keeps the highest predictability. These solutions (cases a
and b) are better because they are consistent and ensure
that the optimization results will be reproduced in the
industrial practical situations. Fig. 5 shows the overlaid of
the five correlated surface roughness equations with their
respective upper and lower bounds. The figure also present
the solution obtained with the application of MMSE opti-
mization routine to the objective function of WPC1b.
4 0.10 0.76 0.69 0.13 0.78
5 0.10 0.76 0.70 0.13 0.82
6 0.12 0.75 0.67 0.15 0.79
7 0.13 0.78 0.71 0.15 0.80
8 0.10 0.61 0.58 0.12 0.66
9 0.10 0.73 0.64 0.13 0.74

10 0.11 0.73 0.66 0.13 0.79
Mean 0.11 0.75 0.68 0.14 0.78
5.4. Confirmation runs

The confirmation runs were conducted to check
whether the responses at optimum highlighted by the
optimization method employed are really attainable. To
this purpose, ten confirmation experiments for case A were
performed to analyze the surface roughness for Ra; Ry; Rz;
Rq and Rt. The parameters adopted for these experiments
were: Vc = 220.00 Fn = 0.13 and d = 0.22. The targets are
presented in Table 12.



Table 14
95% CI lower bound/upper bound.

Forecast model Results Fit (predicted values)

Target Experiment mean Lower bound Upper bound Perez Proposed model

Ra 0.090 0.110 0.059 0.111 0.090 0.081
Ry 0.710 0.746 0.584 0.927 0.757 0.650
Rz 0.620 0.675 0.488 0.762 0.627 0.502
Rq 0.120 0.137 0.076 0.141 0.114 0.096
Rt 0.690 0.780 0.542 0.991 0.763 0.676
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After turning each workpiece, the surface roughness
was measured at four positions at the center of the piece.
An average of three measurements was taken for each
position. These values are presented in Table 13.

The means obtained from confirmation runs indicate
that all responses were positioned within the confidence
interval. The 95% prediction interval is the range in which
we can expect any individual value to fall into 95% of the
time [27]. The results can be observed in Table 14.

All response variables were positioned within the confi-
dence interval. However the method has proved more effi-
cient for Ry, Rz and Rt, which are more sensitive to
dispersion because they are based on the amplitude.

The Paired T-Test was applied to compare Perez’s Model
vs. the Proposed Model. The value of p = 0.054 indicates
that both methods lead to equal results. However the pro-
posed model has an advantage. While Pérez [1] works with
individual responses, the proposed model works with the
principal components.

6. Conclusions

This paper presented a model building strategy to esti-
mate the total uncertainty that affects all response vari-
ables, using the inverse of multivariate uncertainty as
weighting matrix for principal components scores used to
replace the original correlated dataset. The main objective
of this proposal is to achieve a satisfactory variance expla-
nation, making R2 (adj) and R2 (pred) as higher as possible
and consequently, reducing the predictive error of the
model. According to the results some conclusions can be
drawn from the previous sections:

a. The weight matrix represents strong influence over
the model and raise the result of R-Sq(adj) to satis-
factory level, over 80%. On the other hand, the
weight matrix does not reduce the prediction error
(S) such as expected, but conducted to a better pre-
dictability, mainly evidenced from the larger values
of the obtained predicted R2.

b. Following Bratchell’s recommendation a Factorial
Analysis with varimax rotation was applied to the
data. In both case to PC1AF and PC1BF the results of
R2 (adj) and R2 (pred) were low. The Factorial Analy-
sis showed itself to be not capable of improve these
particular results such as expected. But when PC1AF
and PC1BF were weighting with weight matrix, the
results of R-Sq(adj) achieved 94% and 92.4% respec-
tively. Besides, the factorial analysis with varimax
rotation keeps the p-value of the lack-of-fit upper
5%.
c. Considering the optimization results it was possible
to observe that the MMSE approach applied to hard
turning of steel 52100 produced very close solutions
to all the targets. The best point for case A is
achieved with Vc = 220 m/min, Fn = 0.13 mm/rev
and d = 0.22 mm and for case B, Vc = 219 m/min,
Fn = 0.13 mm/rev and d = 0.22 mm. The results indi-
cate that different modeling methods conduct
approximately to the same predicted responses at
optimum, without significant difference between
results obtained with MMSE. However, the multivar-
iate weighted response surfaces (WPC1a, WPC1b)
presented higher predicted R2, suggesting that the
weighted principal component regression equations
achieve the proposed targets through multivariate
mean square error approach while keeps the highest
predictability. These solutions are preferable
because they are consistent, ensuring that the opti-
mization results will be reproduced in the industrial
context.

d. The confirmation runs showed that this method pro-
vides relative accurately the behavior of response
variables, since all the results of the variables ana-
lyzed were within the confidence interval. The
method was able to indicate an optimal point that
provides a solution for the response variables. All
response variables were positioned within the confi-
dence interval. However the method was more effi-
cient for Ry, Rz and Rt, which are more sensitive to
the dispersion since they are based on the
amplitude.
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